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In recent years, optical lattice clocks have demonstrated the ability to reach fractional in-
stability at the 10-18 level [1,2,3].  Such measurement instability plays a vital role in the de-
tailed characterization of systematic effects influencing the lattice clock.  We report on a sys-
tematic evaluation of the NIST Yb optical lattice clock with a total uncertainty at the 10-18 
level, and detail the experimental measurements which support this uncertainty.  Utilizing an 
enhancement cavity, we have quantified lattice Stark shifts over a wide range of trap depths, 
yielding a precise measure of both hyperpolarizability and scalar polarizability effects.  The 
cold atom sample is enclosed in a room-temperature blackbody shield, thereby enabling de-
termination of the BBR Stark shift with an environmental uncertainty of 5x10-19[4].  This en-
closure also functions as a Faraday shield against stray electric fields.  With the ability to ap-
ply high voltage potentials directly to the shield windows, we have experimentally confirmed 
that stray DC Stark shifts are consistent with zero at a level of ≤4x10-19.  Weak transversal 
confinement in the optical lattice and ultracold atomic temperatures (2-3 µK) which suppress 
p-wave atomic interactions [5] limit density-dependent shifts to the 10-18 level.   Residual 
first-order Doppler effects due to lattice phase variations are measured and then nulled with 
active compensation.  Furthermore, we have performed improved measurements of the probe 
AC Stark shift and second-order Zeeman shift.  Comparative measurements between two Yb 
optical lattice clocks will also be reported at the 10-18 level.  Finally, the implementation of an 
improved optical local oscillator for the clock transition at 578 nm will be described, towards 
achieving a clock frequency instability of ≤1x10-16/ ½, for averaging time t. 
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