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 Thick dashed lines represent Raman active 
vibrational modes. Thin dashed lines stand for 
virtual levels. 
 
 Stimulated Raman interactions between a white 
light probe pulse (frequency components, ωprobe) 
and an intense Raman pump pulse (ωpump) 
cause amplifications (stokes side) and signal 
reductions (anti-Stokes side) of the white light. 
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 Stimulated Raman spectra 

 Two narrow band-pass filters (1030 nm) are used for generating the spectrally narrow pulse. The fundamental pump beam is centered at 1030nm, 
after filter pair, the pump pulse  is centered at 1024 nm with a bandwidth of 12 cm–1. Because we can control the center of pump pulse by tilting 
angle of narrow band-pass filters.  
 

 A broadband Raman probe pulse (800–980 nm) providing the Anti-stokes field (the spectral window from 400 cm-1 to 1800 cm-1) with a 130 fs 
NOPA (Nonlinear Optical Parametric Oscillator). When the two fields overlap spatially and temporally on the sample, we can observe loss features on 
the probe beam. 
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 Raman pump and Raman probe spectra 

Raman pump  

after NBP filter 

Δv (FWHM) = ~ 12 cm-1 

             = ~ 1 nm 
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 Anti-stokes beam

Δv (FWHM) = ~ 1360 cm-1 

             = ~ 109 nm 
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 Spontaneous Raman spectrum 
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 The probe spectrum for the Raman pump on and off, gives the loss spectrum (upper). The peak positions are well correlated with them of 
the spontaneous Raman spectra (lower). 
 

 Benzene and Toluene which has ring structure are used for a reference in Raman spectroscopy, because these molecules have the strong 
Raman active mode around ~1000 cm-1 (the ring vibration mode). 

 Raman spectra were collected on a confocal micro-
Raman spectrometer equipped with a grating with a 
600 grooves per mm, a CCD detector with a Pelletier 
cooling, and a 100 × objective. 
 

 Raman spectra were excited by 532 nm beam with 50 
mW power.   

 Chiroptical spectroscopy offers decisive information on stereochemical structures of chiral molecules in condensed phase. In particular, 

Raman optical activity (ROA) as a vibrational chiroptical probe has been proven to be of critical use in distinguishing different 

structural chiralities induced by molecular vibration by measuring a difference between vibrational Raman scatterings for left- and 

right-circularly polarized (LCP and RCP) radiation. However, the conventional ROA measurement method suffers from the intrinsic 

weakness of the corresponding signal (10-5 ~ 10-3 of Raman intensity), which has restricted its wide range of applications including 

time-resolved and space-resolved microscopic studies. 

 We are currently extending this approach to ROA measurement and combining it with coherent Raman process such as 

stimulated Raman scattering (SRS) to achieve an effective ROA measurement. We anticipate that this new approach will be 

applicable to femtosecond ROA spectroscopy and chiral microscopy for stereo-chemical imaging of chiral drugs and biomolecules.  

 In the spontaneous Raman spectroscopy a coherent pump beam at ωp is incident on a sample, 
and Stokes ωS or anti-Stokes ωAS photons are generated. 
 

 However, the stimulated Raman scattering (SRS) is a four-wave interaction. The Stimulated Raman 
Scattering (SRS) represents one of the third-order nonlinear optical processes.  
 

Ks  = ks – kp + kp 

 
 ωs = ωs – ωp + ωp 

Fundamental 

Raman pump 

Δv (FWHM) = ~ 156 cm-1 

             = ~ 12 nm 
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