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We directly confront experiment and our solvatochromism first-principles theory combined with molecular dynamics for

CN probes. We found that H-bonding introduces strong vibrational response due to exchange-repulsion potential slope

wrt normal coordinate. We also found that solvatochromic induction effects are highly delocalized.
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Introduction

◮ Small vibrational probes like CN, SCN and N3 have been extensively used to probe
local electric fields in molecular systems [1]

◮ Vibrational solvatochromism of those probes was understood to be primarily
electrostatic in aqueous environment [1]

◮ In stark contrast, we showed recently [3] that genuinely quantum mechanical Pauli
repulsive potential can contribute to very large blueshifts, though we had no direct
comparison with experiment at that time

◮ To address this problem:
⊲ we measured vibrational frequency shifts of MeCN and MeSCN dissolved in

various solvents of varying polarity and proticity
⊲ we ran MD simulations for chosen solvents
⊲ we applied our solvatochromism theory [2,3]
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Figure: Solvatochromism of Me(S)CN probe across various
solvents.

Ensemble average frequency shifts
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Figure: Decomposition of CN stretch frequency shifts for MeSCN
dissolved in various solvents

Frequency shifts: distributions
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Figure: Distributions of electrostatic and repulsion CN stretch
frequency shifts for MeSCN

Induced solvatochromic moments
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Figure: Upper graphs: total solvatochromic moments vs
electrostatic frequency shifts; lower graphs: distributions of
induced moments

Exchange-repulsion frequency shift - SolEFP

SolEFP repulsive potential
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Polarization - SolEFP

Distributed polarizability derivatives wrt normal
coordinates
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Polarization - continuum
Simple model - understand the physical meaning
of the terms in SolEFP expansion
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Electrostatic solvatochromism of MeSCN CN stretch

Figure: Solvatochromic transition potential
in vacuum (MP2/6-311++G**)

Figure: Induced localized solvatochromic
dipoles (RHF/6-311++G**)

Conclusions

◮ H-bonding interaction induces sharp blue-shifts which are direct manifestation of Pauli
principle!

◮ Such repulsive contribution cannot be linked with electric fields by any means
◮ Consequence: electric field measurements based on electrostatic callibration of CN IR

probes in H-bonding environments are erroneous! To correctly measure the field
strength one needs first to substract exchange-repulsion solvatochromism to obtain
pure electrostatic shifts

◮ Induction effect cannot be neglected. However, solvatochromic polarization cannot be
easily extracted from molecular total solvatochromic moments since it is highly local

◮ CN and SCN probes exhibit very similar solvatochromic responses
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