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Introduction 

Two-dimensional electronic spectroscopy using optical pulse shaper : 

Origin of coherent oscillations in Zn-Naphthalycanine aggregate 

Experiments & Results 

Summary & Perspective 

 

1. We finally confirmed that the origin of slow beating signals at various peaks 

correlated with the phase relationship of two different modes through analysis 

of the 2D spectrum in monomer state. 

2D electronic spectroscopy Molecular Information 
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Absorption spectrum of ZnNPc dissolved  (a) in THF and (b) in Benzonitrile. Molecular structure of ZnNPc  

2.    This 2D approach will be extended to 2D chiroptical spectroscopy in  

       combination with the heterodyne-detected chiroptical method with precise  

       control of optical pulse sequence and polarization state. 

• The normalized absorption spectra of ZnNPc dissolved in THF highly depend on the  

  sample concentration.   

 

• In benzonitrile, however, the normalized absorption spectra do not change significantly     

  with concentration, indicating that the aggregation does not form. 
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• Three femtosecond optical pulses interact with the sample to generate a third order  

   nonlinear signal. 

 

• The optical pulse shaper generates two replica pump pulses with high phase accuracy. 
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•  In both diagonal and cross peaks of the 2D-ES spectra, oscillating signals which are correlated with the  

   vibrational coherence are observed. 

 

• A slow beating is observed due to the contribution of two oscillating components with different frequency  

  (600, and 680 cm-1), which is in good agreement with the vibrational frequency shown in the Raman  

   spectrum  of ZnNPc. 

 2D electronic spectroscopic results  
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(b) Oscillation component at a specific peak position in aggregate (left) 

      and the FFT result (right). 

 

(c) Oscillation component at a specific peak position in monomer (left)  

     and the FFT results (right). 

 

(d) Raman spectrum of ZnNPc. 
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• Time-resolved 2D spectra of ZnNPc in THF (left) and benzonitrile (right) 

   at T=0 fs, 1 ps and 100 ps. 

 

• The lower diagonal peak is elongated diagonally due to inhomogeneous broadening  

  at T=0 and that elongation rapidly disappears in 100 fs in monomer. 
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• The overlay of population oscillation at diagonal point from 13112 cm-1 (black) to 13912 cm-1 (pink)  in   

  monomer state (left) and aggregate (right). 

• The phase at w3=13112 cm-1 with w1=13112 cm-1 to 13912 cm-1 (black)  and w1=13112 cm-1 with    

   w3=13112 cm-1 to 13912 cm-1 (red) and diagonal (blue) in monomer state (left) and aggregate (right). 

• There is a 90° phase shift between the 2D peak oscillations that cannot be readily understood by 

  considering conventional Feynman pathways. 

• It was suggested that population-to-coherence transfer or vibronic coupling is responsible for such an  

  in-quadrature phase shift between diagonal and cross peaks. 


