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Abstract

Experimental results

Summary

Experimental background

Water oxidation is an essential reaction for energy storage such as forming of hydrogen or hydrocarbons without accumulation of by-product.

Unfortunately, This reaction is consist of a complex multistep, which adds a considerably large overpotential to the actual process. Although many

studies have been conducted on OER catalysts with low overpotential and high stability, the specific catalytic reaction mechanism has not yet been

elucidated. Among them, NiFe catalysts, which form layered double hydroxide (LDH) structures by potential, show excellent performance in alkaline

conditions. The performance of the catalyst varies depending on the distance between the layers and the ratio of Ni and Fe. To understand this

catalytic tendency and mechanism, it is important to use surface/interface selective spectroscopic method. Here, using vibrational sum-frequency

generation (VSFG) spectroscopy, we selectively identified graphene electrode-electrolyte interfacial molecules. we designed spectro-electrochemical

(SEC) cell for in situ SFG experiment. In this work, using nonlinear spectroscopic method, we observed that the hydrogen bonding network of the

interfacial water molecules changes at each potential. Our results show that the SFG signal from the interface is originated from the confined water of

LDH catalyst and water molecules of electrolyte.
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Non-resonant signal of iTO

 There is non-resonant signal enhancement

when using semiconductor material such

as iTO.

 Raising above a certain potential causes

graphene to oxidize to form graphene oxide.

 800 nm vis, tunable mid IR focused on sample stage and 

generate sum frequency signal.

Using a displacement sensor, accurately measure the height of 

the sample stage to control the overlap between vis and IR.

The narrow band vis beam (800 nm) 

is just prerequisite for the second 

order nonlinear process.

The broadband IR resonates with the 

vibrational mode of the sample.

Potential dependent spectra at interface

Electrochemical test (CV)

 The spectro-electrochemical cell work successfully using graphene monolayer electrode without using semiconductor material that is origin of strong non-resonant background.

 At the graphene/water interface, the increase of potential results in an increase of surface charge, which results in increase of anion. As a result, the number of water molecules present at the 

interface decreases, thereby reducing the signal intensity. These effects vary depending on the type of electrolyte and are dramatic depending on the anion rather than cation.

 As the catalyst thickness increased, the electrolyte signal decreased and the catalyst signal increased. At this time, since 3650 cm-1 is an OH peak with little hydrogen bonding, it can be seen that it 

is OH of confined water existing between catalyst layers.

 Using the Electrochemical impedance spectroscopy, 
we confirmed that the point of zero charge of the 
graphene / acid interface was 0.1 V.

 As the potential increased, the signal intensity 
gradually decreased, which is expected to be an 
anion screening effect with increasing surface charge.

 Interfacial signal intensity is also different depending 
on the electrolyte.
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In situ confined water of LDH catalyst study
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Spectra of CaF2, graphene at different pH
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Spectra of graphene at different electrolyte

 As measured by varying the amount of catalyst, the 3650 cm-1 peak tended to increase and the intensity 
of the 3000 to 3400 cm-1 (hydrogen bonded region) increased and then decreased.

 As the amount of catalyst increases, laser transmittance decreases, so it can be seen that the OH 
intensity of electrolyte decreases and the intensity of the confined OH between layers of catalyst 
increases.

Ni based layered double hydroxide catalyst


