Focusing of light energy inside a scattering medium by controlling the time-gated multiple light scattering

Ye-Ryoung Lee, Seungwon Jeong, Sungsam Kang, Wonjun Choi, Jin Hee Hong, Jin-Sung Park, Yong-Sik Lim, Hong-Gyu Park, and Wonshik Choi

Center for Molecular Spectroscopy and Dynamics, Institute of Basic Science (IBS)

Department of Physics, Korea University

Experimental Procedure

1. Setup

- ✓ Time-gated detection by using low-coherence light source (Ti:Sa; pulse width ~ 52 fs)
- ✓ Wide-field detection by off-axis holographic microscopy (FOV : $40 \times 40 \ \mu m^2$)
- √ Wave front shaping to control the incidence angle and couple input eigenchannel
- ✓ Transmission measurement (FOV : $180 \times 180 \ \mu m^2$)

2. Sample

✓ The silver disk was deeply embedded within scattering media,
 so that the target was not resolved even via CASS microscopy.
 S. Kang et al., Nature Photonics 9, 583 (2015)

3. Matrix measurement

- ✓ Time-gating was matched to the depth of target object.
- \checkmark We used 1,600 phase ramp pattern within 0.4 NA to cover orthogonal basis for $40\times40~\mu m^2$ FOV.
- ✓ We measured reflected image as each input incident angles.
- ✓ Time-gated reflection matrix was matrix multiplication,

$$R(\vec{r}_o; \vec{r}_i, \tau) = M_o(\vec{r}_o; \vec{k}^i, \tau) \ M_i(\vec{r}_i; \vec{k}^i, \tau)^{-1}.$$

Results

1. Enhanced light energy delivery to the target

- ✓ For the unambiguous proof that the incident light was focused to the target in the case of time-gated eigenchannel, we measured the transmission images.
- √ 4 times enhancement of reflection and transmission for the target at 1.7 lt
 in comparison with the random patterns.

2. Light energy delivery through rat skull

Conclusion

- ✓ We presented the first experimental implementation of the time-gated reflection eigenchannels.
- ✓ The presented method enables controlling multiple-scattered waves for the targets embedded in a scattering medium, which is particularly important for in vivo and in situ applications.
- ✓ We could enhance the light energy that reaches the target by *a factor of more than 10* in comparison with the random input.
- ✓ This work will lay a foundation for enhancing the working depth of imaging, sensing, and light stimulation.