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Introduction

Time-resolved spectroscopy has been revolutionarily developed in last four decades to unvell the
secrets of complex photochemical systems in nature. In particular, femtosecond light source provides not
only the femtosecond-time resolution but also the molecular structure of photochemical species. In these

days, to obtain those

iInformation,

many femtosecond experiments are designed based on

optically-amplified laser systems with low-repetition-rate (~kHz), mechanical time-delay line and
photodetector array. This instrumentation is advantageous for observing the frequency-resolved
nonlinear response of molecules in condensed phase at early waiting time below picosecond time scale,
but much invaluable information across picosecond to nanosecond range is missing unintendedly.

Dual frequency-comb (DFC) is a set of two frequency-stabilized lasers with equally-spaced spectral
lines. When the repetition rates of the two lasers are slightly detuned as fr and f + Af, the time-delay
between the two lasers (7) increases as much as AT precisely for every repetition period (1/f), where AT
can be written as AT = Af [f*. Then, DFC scans T from zero to 1/f, which is tens of ns in general, with the
scan- and sampling-rates of Afr, which ranges from tens of Hz to several kHz, and /, respectively. If the
carrier-envelope offset frequencies of DFC system are also stabilized, DFC can measure the electronic
coherence of optical samples. This enables DFC to be applied gas-phase spectroscopy and atmospheric
analysis, which requires the frequency resolution of GHz level. We have applied the unique properties of
DFC to nonlinear spectroscopy in condensed-phase [1, 2], and theoretically described it based on
time-dependent perturbation theory [3]. Furthermore, we have recemtly succeeded to expand DFC-based
time-resolved spectroscopy into two-dimensional spectroscopy.
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Transient absorption spectroscopy (2D)
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| RF domain Data Acquisition with Single-Point Photodetectors \
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(1) T automatic scaned by repetition frequency detuning ' ' ' | ' '
Af, where Af = 32 Hz, 3.2 kHz (AT = 5 fs, 500 fs)
(2) ,: continuously scanned while T'is being scanned
(3) t,: fixed
(4) Phase-errors with respect to t, and t, are analytically
calibrated by two references.
(5) Gated sampling 0 50 100 0 50 100
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